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Dedicated to Dan Shanks on his 70th birthday 

Abstract. Extending previous work of H. W. Lenstra, Jr. and the first author, we give 
quantitative conjectures for the statistical behavior of class groups and class numbers for 
every type of field of degree less than or equal to four (given the signature and the Galois 
group of the Galois closure). The theoretical justifications for these conjectures will appear 
elsewhere, but the agreement with the existing tables is quite good. 

1. Introduction and Notations. In [3], H. W. Lenstra, Jr., and the first author 
developed a method for conjecturing quantitative results on class groups of quadratic 
fields and cyclic extensions of prime degree. In a forthcoming paper [4] we shall 
show that this technique can be extended to a much wider class of number fields, 
and also to relative extensions. 

The aim of the present paper is to rapidly make available the numerical conjec- 
tures obtained, for people not really interested in our heuristic reasoning or not 
wanting to wait for [4] to appear. Hence, apart from a total lack of justifications for 
the conjectures that we present, this paper is essentially self-contained. The plan is as 
follows. 

In the rest of this section we present the notations used in the sequel. Some of 
them being nonstandard (and in general differing from the notations of [3]), we urge 
the reader to read the notations carefully before applying the conjectures. 

In the next section we present templates for the subsequent conjectures, and then 
the conjectures themselves, illustrated by numerical examples, first for their own 
sake, and second as a double check for the reader to understand the templates. These 
conjectures are given for all types of fields of degree less than or equal to four. 

In the final section we comment on the consistency of the conjectures with 
existing tables (which is quite good). 

Combinatorial Notations: 
* If X is a set, {XI denotes its cardinality. 
* For an integer p > 2 and a an integer or oo, we set: ( pi)a = H1 Gk a(l - p-k); 

in particular (p)00 = r'k i(1 - P-k), (p)o = 1. 

Remark. It would have been more consistent with the usual notations of combina- 
torics to write this as (l/p),, but the present notation is typographically simpler. 
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124 H. COHEN AND J. MARTINET 

Algebraic Notations: 
* The letter K will stand for the generic algebraic number field whose class group 

we want to study. 
* HK (resp. HK/k for relative extensions) will denote the subgroup of the class 

group consisting of elements whose order is not divisible by the given bad prime or 
primes (resp. and in the kernel of the norm map from K to k). 

Warning. HK does not denote the class group itself, in general. 
* hK = IHKI, hK/k = IHK/kI- 

* The letter M will denote a Galois closure of K over Q, and F = Gal(M/Q). 
* A will denote a direct product of Dedekind domains Ai (in fact, in our cases, A 

will either be a direct product of copies of Z or a single Dedekind domain). 
* If G is an A-module, AutA G (or simply Aut G) will denote the group of 

A-automorphisms of G, and Gi will denote the component of G on the factor A, of 
A (hence G H F1 G,). 

* If p is a maximal ideal of a Dedekind domain A, we will write rA(G) for the 
prank of G as an A-module, i.e., the dimension of G/pG over A/p. We shall write 
rz(G) for the p-rank of G when G is viewed only as a Z-module. Note that when A 
is the ring of integers of a quadratic field then 

(i) if p splits in A, say pA = P A, 

rp (G) = rpA(G) + r(G); 

(ii) if p is inert in A, 

rZ(G) = 2r A(G). 

If A = Z we write simply rp(G) instead of rZ(G). 
Analytic Notations: 
* In the templates, the letter f will stand for a "nice" function (not further 

specified!) defined on isomorphism classes of finite A-modules. 
* If A = H1 - I - m A,, where the A, are Dedekind domains, then the zeta function 

of A is by definition a function of m complex variables defined by analytic 
continuation to Cm of the following function: 

vA(s) = Hl DA (S), 

1 <- I < m 

where s = (s1,..., Sm) and DA, is the Dedekind zeta function of Ai (when it is 
defined). 

Warning. This differs from the usual definition of DA, a function of one complex 
variable s, which one recovers by setting s, = = s. = 

* The Z function of A is defined by 

zA(S)= H A(S + k I), 
k>1 

where I = (1, . .. , 1) is an m-dimensional vector. 
* The Z function of A relative to the function f is obtained by analytic 

continuation of 

ZA(f; s) = ZI(G) I AutA G lI- GlIs1 I G I-s 
G 

where the summation is over all A -isomorphism classes of finite A -modules G. 
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* If 1 is the constant function equal to 1 everywhere, then it is a theorem (not a 
conjecture!) that 

Z (1, s) = ZA (s) 

(see [3, Corollary 3.7] or [4]), whence the notation. 
* C(A) = Ress=OZA(s) = Ress=l1A(s)Ik>2 2A(k) (used only when A is a 

Dedekind domain). 
* If 6 is a prime number which we want to exclude (a "bad" prime), we use 

*A (s) and ZA i(S) to mean that we omit the Euler factors corresponding to prime 
ideals dividing 6, and more generally ZA e(f; S) to mean that in the sum defining 
ZA(f; s) we take only finite A-modules of order not divisible by 6. 

* Finally, we set 

MA(f;S) =ZAg (f; S)IZA( 

where it is understood that the limit is taken if both the numerator and denominator 
vanish. 

2. The Conjectures. Let K be a generic algebraic number field, M a Galois 
closure of K, and F = Gal(M/Q) as usual. 

For a given F we first give a diagram indicating interesting subfields of M and 
their interrelations (although usually not the conjugates of K), then the "bad" prime 
6 (when [K: Q] < 4 there is only one such), the ring A, and in the non-Galois case, 
relations between class groups outside the bad prime as always (these relations being 
theorems, not conjectures!). We indicate the degrees of the field extensions, except 
when they are equal to two. 

We then consider the set W of isomorphism classes of fields K having given F, rl, 
r2 (number of real and complex embeddings of K). If f is a function (see notations), 
we define the average of f as the following limit, if it exists: 

(ff )= lim E f (HK)l E 1, 
X-oo KeW Ke 

IDKI|<X IDKIs<X 

where DK is the discriminant of K. (If we work with relative extensions, replace HK 
by HK/k in this definition.) 

We then give a general heuristic prediction linking i((f) to the function 
MA ,(f; s) defined above, and we specialize this prediction to a number of interest- 
ing functions f. In many cases, f will be the characteristic function of a property P 
of HK (i.e., 1 if P is true, 0 if not), and in this case we shall speak of the 
" probability" that P holds (written pr(P)), although evidently X((f ) is only finitely 
additive. 

For each of the functions f we give a few numerical examples, the numbers being 
rounded to six decimals. 

In what follows: 
* 6 will be the bad prime. 
* H will be a finite A-module of cardinality h. 
* h and m will denote integers not divisible by 6. 
* p will denote a good prime, and p a prime ideal of A dividing p. 



126 H. COHEN AND J. MARTINET 

We shall give in turn: 

(a) Pr(HK = A H), Pr(hK = h). 
(b) Pr(m I hK). 
(c) Pr(rOA(HK) = r) and similar quantities. 
(d) The average of (N)nr(HK) (n a positive integer). 
(e) The average of h K. 

(f) In a few cases, some additional conjectures. 
For relative extensions, we of course replace HK and hK above by HK/k and 

h K/k- 

Recall once more that HK denotes the class group with its e-component removed. 
(1) Quadratic Fields. 

K r= Z/2Z 

I bad prime: t = 2 
Q A=Z 

(1.1) Complex quadratic fields. 

(r1 = 0, r2 = 1), 

( f )= MZ2(f; 0). 

(a) pr(HK = H) = 0, pr(hK = h) = 0. 
(b) pr(m I hK) = F1p01m( - (P)OO/(P)a-1)- 
Examples. 

m = 3: 0.439874; m = 5: 0.239667; 
m = 7: 0.163204; m = 9: 0.159811. 

(c) pr(rp(HK) = r) =p-r2(p) /(p)2 
Examples. 

p=3: r = 0: 0.560126; r = 1: 0.420095; 

r = 2: 0.019692; r > 3: 0.000087; 
p=5: r = 0: 0.760333; r = 1: 0.237604; 

r > 2: 0.002063. 
(d) (pnrp(HK)) = ,n0 pi(n i)(p)/((p)(p)) 

Examples. 
n=1:2; n=2: p+3. 

(e) A(hK) = 00. 

(1.2) Real quadratic fields. 

(rl = 2, r2 = 0), 

#( f) = MZ*(f; 1). 

(a) pr(HK H) = (2h(2) OC(Z)IAut H|) 

pr(hK = h) = (2h2(2),OC(Z) Hl (P) a) 
p"I1h 

Examples. 
h = 1: 0.754458; h = 3: 0.125743; 
h = 5: 0.037723; h = 7: 0.017963; 

h = 9: 0.015718 (H Z/9Z: 0.013971; H = (Z/3Z)2: 0.001746). 
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(b) pr(m I hK) = Hlpajim(1 (p)WP)i)Yo 6/.aP -( p),a) ) 

Examples. 

m = 3: 0.159811; m = 5: 0.049584; 
m = 7: 0.023739; m = 9: 0.019779. 

(c) pr(rp (HK) = r) = p -r(r+l)(p)o/((Pp)(p)) 

Examples. 

p=3: r = 0: 0.840189; r = 1: 0.157535; 

r > 2: 0.002275; 

p=5: r = 0: 0.950416; r = 1: 0.049501; 

r > 2: 0.000083. 

(d) _k(pnrP(HK)) =-n _ pl(nfl-l)(p)/((p)(p)). 
Examples. 

n=1:1+p-1; n=2:2+p-1?p' 2 

(e) A'(HK) = 

(f) (Also conjectured by C. Hooley [11]) 

E hQ(rp) 
- 8as x -xc. 

psgx 
p prime, p 51 (mod 4) 

(2) Cyclic Cubic Fields. 

K r = Z/3Z 
3 1 bad prime: 6=3 
Q A = Z[j] (j =e2l7T/3) 

K is totally real (rl = 3, r2 = 0), 

A'(f) = MA3(f;1). 

(a) pr( HK A H) 2= h(3)00C(A)IAutA HI), 

pr(hK = h) =2" h2(3)OOC(A)) E H (NP)a1. 
2Na = h paIQa 

Here, a runs through all integral ideals of A of norm h, and P through prime 
ideals dividing a. 

Examples. 

h = 1: 0.850072; h = 4: 0.070839 (here H - Z (Z/2Z)2); 

h = 7: 0.040480 (50% for each of the two A-isomorphism classes); 

h = 13: 0.010898 (50% for each of the two A-isomorphism classes); 

h = 16: 0.004723 (H Z (Z/4Z)2: 0.004427; H Z (Z/2Z)4: 0.000295). 
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(b) pr(m I HK) = P1P2, where 

P1 = n 1_((p)2 /(p)l2) (p2,+2'y(p) 8(p) Y)-lj 
Polln, O<flR+7<a 

p-- (mod 3) 

P2= I - ((p2)oo/(p2)1) P (P 4l(p2)8)) 
poll", 0 <,8 <a/2 

p_2 (mod3) 

Examples. 
m = 2 and m = 4: 0.081950; m = 5: 0.001667; 
m = 7: 0.046914; m = 8 and m = 16: 0.005446. 

(c) pr(rtA(HK) = r) = NP)-r(r+l)(Np) o/((NP)r(Np)r+l). 
If p 1 (mod 3), then 

pr(rpZ(HK) = r) = (p)2 A(p)t(p) (p) (p) J 
t~u=r 

If p 2 (mod 3), then 

( 0 if r is odd, 

pr( rZ(HK) = r) = -r(r+2)/2( p2)/(( p2) r/2( p2)(r/2)?+1) otherwise. 

Examples. 
p=2: r = 0: 0.918050; r = 2: 0.081604; 

r > 4: 0.000346; 
p=5: r = 0: 0.998333; r > 2: 0.001667; 

p=7: r = 0: 0.953086; r = 1: 0.046331; 

r> 2: 0.000583. 
(d) If p 1 (mod 3) then 

n 
,,(pnr (HK)) = pl(f 

il)(p)n/((p),(P)n-1), 

i=O 

g(pp(K) n ) - 
p p(K) 

2 

Examples. 

n = 1: (1 +p-1)2; n = 2: (2 +p-1 +?p2)2. 

If p-2 (mod 3) then 
n 

(p2nr 
A 

(HK) - ppnrZ(Hk) E p2((n (P2) n/((p2) ( p2)) 
i=0 

Examples. 

n =1:1+ p-2; n = 2 2 + p-2 + p-4. 

(e) J(hK) = . 
(3) Non-Galois Cubic Fields. 

SM 3 r = S3 

/ \ k bad prime: t= 3 

K k A=Z 
\ / ~~~HM/k HK X HK 
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(3.1) Complex cubic fields. 
(r1 = 1, r2= 1), 

Sf1(f) = M*Z3(f; 1). 

(a) pr(HK=H) = (h(3).C(Z)|AutHj) 

pr(hK= h) = (h2(3),OC(Z) H (p)a) 
pallh 

Examples. 

h = 1: 0.518642; h = 2: 0.259321; 

h = 4: 0.086440 (H Z/4Z: 0.064830; H = (Z/2Z)2: 0.021610); 

h = 5: 0.025932. 
(b) pr(m I hK) = Hpolim(( - ((P)oo/(P)i) (p2'3(p)i8)-'). 

O < ,8 < a 
Examples. 

m = 2: 0.422424; m = 4: 0.133636; 
m = 5: 0.049584; m = 7: 0.023739. 

(c) pr(r (HK) = r) = p-r(r+l)(p) /((p)(p)) 
Examples. 

p = 2: r = 0: 0.577576; r = 1: 0.385051; 

r = 2: 0.036672; r > 3: 0.000702. 
For p > 5 see 1.2(c). 

(d), (e) See 1.2(d) and 1.2(e). 
(3.2) Totally real non-Galois cubic fields. 

(r1 = 3, r2 = 0), 

(f) = MZ3(f;2). 

(a) pr(HK H) (8 2 h 2(3)o C (Z) Aut H) 

pr(hK = h) = ( 2h3(3),OC(Z) rL (P)a) 

Examples. 

h = 1: 0.758339; h = 2: 0.189585; 

h = 4: 0.031597 (H Z/4Z: 0.023698; H (Z/2Z)2: 0.007899). 

(b) pr(m I hK) = Hp1llm7(1 - ((P)o/(P)2)Y0< 6< (P (p)a)) 

Examples. 

m = 2: 0.229898; m = 4: 0.037373; 
m = 5: 0.009983; m = 7: 0.003400. 

(c) pr(rp(HK) = r) = p-r(r+2)(p) /((p)r(p)r) 
Examples. 

p=2: r = 0: 0.770102; r = 1: 0.220029; 

r = 2: 0.009779; r > 3: 0.000090; 
p=5: r = 0: 0.990017; r = 1: 0.009980; 

r > 2: 3.3 x 10-6. 



130 H. COHEN AND J. MARTINET 

(d) ((nrp(HK)) = En 0 pi(n-ll2)(p)/((p)1(p)n-) 

Examples. 

n = 1: 1 + p-2; n = 2: 1 + p-' + p-2 + P-4 

(e) A'(hK) = 47 2/27 = 1.462164. 

(4) Cyclic Quartic Fields. 

K Fr= Z/4Z 

I bad prime: /= 2 

k HK~ Hk X HK/k 

I hence only HK/k is interesting 

Q A =Z[i] 

(4.1) Totally complex cyclic quartic fields. 

(r1 = 0, r2 = 2). 

Here, k is real quadratic. 

_4(f) = MA2(f;?) 

Remark. If one wants the full class group HK, then the template is 

JI(f) =MB 

where B = Z x Z[i]. 
(a) pr(HK/k -A H) = 0, pr(hK/k h) = 0. 

(b) pr(m I hK/k) = P1P3, where 

P1= n~(o4 (i - (pj),. O~ly (PP?Y(P):(Pk)')-l 
pi = 11 (i - p-1 (mod 4) 

P3 = rI (1-P2).I/(p2)(-)2 
paolm 

p 3 (mod 4) 

Examples. 

m = 3: 0.123440; m = 5: 0.421894; 
m = 7: 0.020825; m = 9: 0.123440; 

m = 11: 0.008333; m = 13: 0.158813. 

(c) pr(roA(HK/k) = r) = (Nb)-r(NP)c/(N 
2 

If p 1 (mod 4), then 

pr(rPZ(HK/k) = r) = (p)2 t2-2/((p)2()2) 
t~u=r 

If p 3 (mod 4), then 

(0 if r is odd, 
pr(rP(HK/k) = r) = \pr2/2(p2)3/(p2)2 otherwise. 

Examples. 

p = 3: r = 0: 0.876560; r = 2: 0.123266; 

r>4: 0.000173; 

p = 5: r = 0: 0.578106: r = 1: 0.361316; 

r = 2: 0.059592; r > 3: 0.000986. 
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(d) If p 1 (mod 4), then 

( 0np(K*)=Epf ) P) n/((P)M(P) n-Jq) 
i=0 

( p pnr Z(HK/A) = ( 
A 

( prHK/A) )2 

Examples. 

n=1:4; n=2:(p+3)2. 

If p 3 (mod 4), then 
n 

gp2nrA(HK/k) = pnr~Z(HK/k)) = 
E p2i(l-l)(2)((p2) (p2). 

i=O 

Examples. 

n = 1: 2; n = 2: p2 + 3. 

(e) '(h K/k) = ' 
(4.2) Totally real cyclic quartic fields. 

(r1 = 4, r2 = 0), 

JI(f) = MA2(;1). 

Remark. For the full class group HK, 

4(f ) = MB2(f; 
where B = Z x Z[i]. 

(a) 

pr(HK/k A H) = (-7Th(2),oC(A)IAutA HI) , 

pr(hK/k = h) = (,h2(2)EC(A)) ? H (NH )Z' 
Na=h Palga 

Here, a runs through all integral ideals of A of norm h, and p through prime 
ideals dividing a. 

Examples. 

h = 1: 0.864608; 
h = 5: 0.086461 (50% for each of the two A-isomorphism classes); 

h = 9: 0.012008 (here, H Z (Z/3Z)2); 

h = 13: 0.011085 (50% for each of the two A-isomorphism classes). 

(b) pr(m I h K/k) = P1P3, where 

P1 = I 
(1_ ((P)2 /(P)2) (P2,1+2-(P)'8(P).Y) )' PI= H 0-I 

p-1 (mod 4) 

P3 = ii (1 - ((p2) 0/(p2)1) O (p4,8(p2)/3))- 
pollm <m8d</2 

p-3 (mod 4) 
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Examples. 

m = 3: 0.013870; m = 5: 0.096709; 
m = 7; 0.000425; m = 9: 0.013870; 
m = 11: 0.000069; m = 13: 0.012774. 

(c) pr(rA(HK/k) = r) = (N)-r(r+l)(Np) /((NU)M(N0)ri). 
If p 1 (mod 4), then 

pr(rpz(HK/k) = r) = (P)O 
P 

Pt(t+l)(U(U+1 )/(p)(p)(p)(p)) 
t? u=-r 

If p 3 (mod 4), then 

{ 0 if r is odd, 
pr(rpz(HK/k) = r) = pr(r+2)/2( p2)"(( p2 ) r/2( p2 ) (r12) + 1) otherwise. 

Examples. 

p=3: r = 0: 0.986130; r = 2: 0.013867; 

r> 4: 2.1 X 10-6; 

p = 5: r = 0: 0.903291; r = 1: 0.094093; 

r > 2: 0.002617. 

(d) If p 1 (mod 4), then 
,, 

,(nprA,(HK/)) = Zp(nlZll)(p)/((p)(p)) 

i=0 

( pPnrP(HK/)) = (.( pnrA(HK/ ))) 

Examples. 

n = 1: (1 + P-)2; n = 2: (2 +p-' + p_2)2 

If p 3 (mod4), then 

~((2nrA(HK1A) -.IipnrZ(HK/&) - ini1 2 P2 2 

1=0 

Examples. 

n =1:1+ p-2; n= 2 22 p2?p4 

(e) //(h K/k) = c0. 

(5) Bicyclic Fields. 

,K 
// I IF = (Z/2z)2 

k I k2 k3 badprime: t= 2 
\ HKZ HK1 X Hk2 XHk 

Q 
Our heuristics predict that these three groups be'iave independently, hence the 

desired conjectures for HK or HK/k3 ~ Hk1 X Hk2 can easily be deduced from the 
conjectures in the quadratic case. For the sake of completeness we give the 
templates. 
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For HK we take A = Z3. 
For HK/k3 we take A = Z 2. 
(5.1) Totally complex bicyclic fields. 

(r1 = 0, r2= 2). 
For HK (A = Z3): yg(f) = MA 2(1;0,0,1). 
For HK/k3 (A = Z2) 

if k3 is complex: J(f) =MA 

if k3 is real: JI(f) = MA2(f;0,0) 

(5.2) Totally real bicyclic fields. 

(r1 = 4, r2 = 0). 
For HK (A = Z3): yg#(f) = MA 2(1; 1, 1, 1). 
For HK/k3 (A = Z2): J(f ) = M 2(f; 1, 1) (here k3 is real). 
(6) Dihedral Quartic Fields. 

M 
F = D8 
bad prime: (= 2 

K E K' Note. In this diagram Gal(M/k0) Z/4Z, 
\\ I // while Gal(M/k) 

- 
Gal(M/k') - 

(Z/2Z)2. 
k ko k/ Only the relative class group HK/k is 

4 4 interesting, and we have 

HM/E - HK/k X HK/k and HK'/k' = 
HK/k 

Q A=Z 
(6.1) Totally complex dihedral quartics with complex quadratic subfield k. 

(r1 = 0, r2= 2), 

(1(f ) = MZ2(f; 1). 

For specific f and examples, see (1.2) (real quadratic fields). 
(6.2) Dihedral quartics of mixed signature. 

(r1 = 2, r2= 1). 
Same as (6.1). 

(6.3) Totally complex dihedral quartics with real quadratic subfield k. 

(r1 = 0, r2 = 2), 

.1k(f) = MZ2(f;0). 

For specific f and examples, see (1.1) (complex quadratic fields). 
(6.4) Totally real dihedral quartic fields. 

(r1 = 4, r2 = 0), 

( f )= MZ2(f; 2). 

(a) 

pr(HK/k 
- 

H) - ( 2(2)ooC(Z) I AutH 

pr(hK/k = h) - (12h3(2),OC(Z)H (p)a 
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Examples. 

h = 1: 0.930775; h = 3: 0.051710; 
h = 5: 0.009308; h = 7: 0.003166; 

h = 9: 0.002155 (H Z/9Z: 0.001915; H - (Z/3Z)2: 0.000239). 

(b) pr(m I hK/k) = HpmoPm(l -((P)OAP)2)E0B<8 (P (P) ) ) 

Examples. 

m = 3: 0.054787; m = 5: 0.009983; 
m = 7: 0.003400; m = 9: 0.002275. 

(c) pr(rP(HK) = r) = p-r(r+2)(p) /(p)r(p)r) 
Examples. 

p= 3: r = 0: 0.945213; r = 1: 0.054532; 

r > 2: 0.000256; 
p= 5: r = 0: 0.990017; r = 1: 0.009980; 

r > 2: 3.3 X 10-6. 
(d) A#(pnrP(HK/k)) = Zn pi(n-i-2)(p)/((p)(p).) 

Examples. 

n = 1: 1+ p-2; n = 2: 1+ p-1 + p-2 + p-4. 

(e) /l(hK/k) = T2/8 = 1.233701. 
Remark. The conjectures that we obtain in the case D8 are, as expected, the same 

as the ones that we would obtain for quadratic extensions of a fixed quadratic field 
k (such an extension being of type D8 with probability 1). 

(7) Quartic Fields of Type A4. 

M 

K L1 L3 F = A4 
\ \|/ bad prime: t= 2 

C 
HK X HK X HK (HK HL/C) 

\ /3 A=Z 

Q 

(7.1) Totally complex quartic fields of type A 4. 

(rl = 0, r2 = 2), 

J((f ) = MZ2(f; 1). 

For specific f and examples, see (1.2) (real quadratic fields). 
(7.2) Complex quartic fields of type A4 of mixed signature. 

(r1 = 2, r2 = 1). 

These fields to not exist! 
(7.3) Totally real quartic fields of type A4. 

(r= 4, r2= 0), 

f ) = Mz2( f; 3). 
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(a) 

pr(HK H) = ( 128 h3(2)00C(Z)IAut HI)1 
TTr 2~ (3) 

pr(hK = h)= (128 h4(2) C(Z) H (P)a) 
\77T 2~ (3) am 

Examples. 

h = 1: 0.978989; h = 3: 0.018129; 
h = 5: 0.001958; h = 7: 0.000476; 

h = 9: 0.000252 (H Z/9Z: 0.000224; H (Z/3Z)2: 0.000028). 

(b) pr(m I hK) = Hpajjm( (P)ooAP)3)10 <,8< 4,(p)a) 
Examples. 

m = 3: 0.018433; m = 5: 0.001999; 
m = 7: 0.000486; m = 9: 0.000256. 

(c) pr(rp(HK) = r) = 
p-r(r+3)(p)oo(p)r(p)r) 

Examples. 
p=3: r = 0: 0.981567; r = 1: 0.018404; 

r > 2: 0.000029; 
p=5: r = 0: 0.998001; r >? 1: 0.001999. 

(d) _f(pnrp(HK)) 
E ,nO pi(n-i-3)(p)/((p)1(p) ) 

Examples. 

n = 1:1 + p-3; n 2:1 +p-2 + p-3 + p-6. 

(e) k(hK) = 7(3) = 1.051800. 

(f) J4(h 2) = 7,2D(3) = 1.297606. 

(8) Quartic Fields of Type S4. 

M 

S3 3 1 

LK F = S4 
Kk bad prime: f= 2 

K g L L kG L = C(Vm) with NC/Q(m) E Q*2 
K LHm/c- HK X HK X HK and 

\ 4 \1/\t30 HK HL/c 

k 

(8.1) Totally complex quartic fields of type S4. 

(r1 = 0, r2 = 2), 

-#(f ) = MZ2(f; 1). 

For specific f and examples, see (1.2) (real quadratic fields). 
(8.2) Quartic fields of type S4 and mixed signature. 

(r1 = 2, r2 = 1), 

I(f) f )MZ2(f; 2). 
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For specific f and examples, see (6.4) (totally real dihedral quartic fields). 
(8.3) Totally real quartic fields of type S4. 

(r1 = 4, r2 = 0), 

( (f) = MZ2(f; 3). 

For specific f and examples, see (7.3) (totally real quartics of type A4). 

3. Discussion. The tables that we have at our disposal (some of which having been 
extended specifically to test our conjectures) are as follows: 

- Complex quadratic fields, IDKI < 2.5 x 107 [2]. 
- Real quadratic fields Q(r/p) with p prime, p < 108 [15]. 
- Cyclic cubic fields, DK < 2.56 x 108 ([9], [8]). 
- Noncyclic complex cubic fields, IDKI < 2 X 104 [1]. 

- Pure cubic fields Q( p) with p prime, p < 106 ([13], [15]). 
- Noncyclic totally real cubic fields, I DK I < 5 X 105 [7]. 
- Some tables for fields of degree 4 and 6, which are not sufficiently extensive to 

make any significant statistics ([10], [12], [6]). In addition, C. P. Schnorr [14] 
kindly computed for us a few samples for I DKI 5 x 108 for complex quadratic 
fields. 

The first observation is that for imaginary and real quadratic fields, and for cyclic 
cubics, the agreement with the tables is very good. 

The second observation is that for noncyclic complex cubic fields, the agreement 
is not so good. Now in the non-Galois cubic case, as will be explained in [4], we have 
every reason to believe that the prime 2 behaves like a good prime. The poor 
agreement with the tables would seem to indicate that, either our whole strategy in 
the non-Galois case is wrong, or at least that 2 should be considered also a bad 
prime. However, the discriminants involved in the table of [1] are not very large. If 

we look at the subtable of pure cubic fields, the discriminant of Q(Jf) is 3p2 or 
27p2, according as p ? 1 (mod 9) or not, hence in the table of [15] the discrimi- 
nants go up to more than 3 x 1012. If we assume that, as a whole, pure cubics 
behave like any other complex cubics, then ordering them as usual by discriminants 
(and not by p!) we find very good agreement with the tables. Thus we believe that 
the poor agreement with [1] is due to the fact that the discriminants are not 
sufficiently large. 

However, there is another phenomenon which has been stressed several times 

([13], [15]) and which we repeat here: If one considers only Q(+/i) with p 2 
(mod 3) prime (so as not to be bothered by the 3-part), and if one distinguishes 
between p -1 (mod 9) and p 2, 5 (mod 9), one notes a marked distinction in the 
behavior of the class group. For example, class number 1 seems to occur with 
probability 0.60 for p -1 (mod 9), but with probability 0.40 for p 2, 5 (mod 9). 
This is apparently due to the higher 2-part of the class group in the second case, and 
although a sort of reinterpretation of this phenomenon has been given in [5], no 
satisfactory heuristic explanation has yet been found. 

Since DK < x is equivalent to p <s x/3 for p -1 (mod 9) and p < x/27 for 

p 2, 5 (mod 9), by taking together all the Q(l/F) with p 2 (mod 3) and discrimi- 
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nant < x, we find an approximate probability of 

5 x0.60 + 2 x 0.40 = 0.52 

of having class number 1, very close to the predicted probability 0.5186. 
A similar remark can be made about quartic extensions of type A4 and S4: The 

prime 3 could be bad. However, we think that this is not the case. 
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